organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pyrrolidinium chloride

Helene Giglmeier, Tobias Kerscher, Peter Klüfers* and Peter Mayer

Ludwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 29 January 2009; accepted 19 February 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.040; *wR* factor = 0.120; data-to-parameter ratio = 24.4.

The title compound, $C_4H_{10}N^+ \cdot Cl^-$, was obtained as a decomposition product from 2,6-bis(pyrrolidinyl)pyridine. The anion lies on the same cristallographic mirror plane as the N atom of the cation, the complete cation being generated by mirror symmetry. The anions and cations are connected by $N^+ - H \cdots Cl^-$ hydrogen bonds into chains along [100]. The pyrrolidinium cation is puckered in an envelope conformation E_{N1} .

Related literature

For details of the synthesis of 2,6-bis(pyrrolidinyl)pyridine, see: Folmer-Anderson *et al.* (2005). For related structures containing the pyrrolidinium cation, see: Kashino *et al.* (1978); Moritani *et al.* (1987); Jakubas *et al.* (2005). For a description of the $E_{\rm N1}$ conformation of the five-membered ring, see: Cremer & Pople (1975).

Experimental

Crystal data $C_4H_{10}N^+ \cdot Cl^ M_r = 107.58$

Orthorhombic, *Pnma* a = 7.4429 (4) Å b = 9.4104 (5) Å c = 8.9021 (4) Å $V = 623.51 (5) \text{ Å}^3$ Z = 4

Data collection

Nonius KappaCCD diffractometer Absorption correction: none 4239 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 31 parameters $wR(F^2) = 0.120$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.21$ e Å⁻³756 reflections $\Delta \rho_{min} = -0.24$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H101···Cl1	0.92	2.17	3.091 (3)	180
$N1 - H102 \cdot \cdot \cdot Cl1^i$	0.92	2.18	3.097 (2)	177

Mo $K\alpha$ radiation $\mu = 0.48 \text{ mm}^{-1}$

 $0.22 \times 0.13 \times 0.12 \text{ mm}$

756 independent reflections

608 reflections with $I > 2\sigma(I)$

T = 200 K

 $R_{\rm int} = 0.037$

Symmetry code: (i) $x - \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 2004); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

TK thanks the Hanns Seidel Stiftung for a personal grant funded by the German Bundesministerium für Bildung und Forschung.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2348).

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Folmer-Anderson, J. F., Lynch, V. M. & Anslyn, E. V. (2005). Chem. Eur. J. 11, 5319–5326.
- Jakubas, R., Bednarska-Bolek, B., Zaleski, J., Medycki, W., Holderna-Natkaniec, K., Zielinski, P. & Galazka, M. (2005). Solid State Sci. 7, 381–390. Kashino, S., Kataoka, S. & Haisa, M. (1978). Bull. Chem. Soc. Jpn, 51, 1717–
- 1722. Moritani, Y., Sasahara, N., Kashino, S. & Haisa, M. (1987). Acta Cryst. C43,
- 154–158.
- Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o592 [doi:10.1107/S1600536809006060]

Pyrrolidinium chloride

H. Giglmeier, T. Kerscher, P. Klüfers and P. Mayer

Comment

The title compound was obtained as a decomposition product. The organic salt is composed of the pyrrolidinium cation and a chloride anion (Fig. 1). The crystal packing is shown in Fig. 2. In the crystal, both H atoms bonded to N1 of the pyrrolidinium cation are involved in hydrogen bonds with chloride as acceptor. Both can be described according to graph set analysis with a $D^{1}_{1}(2)$ descriptor on the unitary level. This bonding pattern leads to chains along [1 0 0] which, starting from chloride, can be described according to graph set analysis with a $C^{2}_{1}(4)$ descriptor on the binary level. The hydrogen bonding pattern is shown in Fig. 3.

The C_s symmetric five-membered pyrrolidinium ring can be described according to Cremer & Pople (1975) by the puckering parameters $q_2 = 0.3061$ Å and $\Phi_2 = 180.0000$. The closest pucker descriptor is an envelope E_{N1} .

Experimental

The title compound was obtained as decomposition product of 2,6-bis(pyrrolidinyl)pyridine, which was synthesized according to Folmer-Anderson *et al.* (2005), after 4 months at room temperature.

Refinement

H atoms were placed in calculated positions (C—H = 0.99 Å, N—H = 0.92 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H) = 1.2 U_{eq}(C/N)$.

Figures

Fig. 1. The molecular structure of the C_s symmetric title compound with anisotropic displacement ellipsoids drawn at 50% probability for non-H atoms. Symmetry code: (i) x, -y + 1/2, z.

Fig. 2. Packing of the title compound, viewed along [0 1 0].

Fig. 3. N—H…Cl hydrogen bonds lead to chain-like structures in the crystal structure along [1 0 0], shown here normal to [0 1 0]. Symmetry codes: (i) x + 1/2, -y + 1/2, -z + 1/2; (ii) x - 1/2, -y + 1/2, -z + 1/2; (iii) x - 1, y, z.

Pyrrolidinium chloride

Crystal data

$C_4H_{10}N^+ \cdot Cl^-$	$F_{000} = 232$
$M_r = 107.58$	$D_{\rm x} = 1.146 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pnma	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 2321 reflections
a = 7.4429 (4) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 9.4104 (5) Å	$\mu = 0.48 \text{ mm}^{-1}$
c = 8.9021 (4) Å	T = 200 K
$V = 623.51 (5) \text{ Å}^3$	Block, colourless
Z = 4	$0.22 \times 0.13 \times 0.12 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	608 reflections with $I > 2\sigma(I)$
Radiation source: rotating anode	$R_{\rm int} = 0.037$
Monochromator: MONTEL, graded multilayered X-ray optics	$\theta_{\text{max}} = 27.5^{\circ}$
T = 200 K	$\theta_{\min} = 3.2^{\circ}$
φ and ω scans	$h = -8 \rightarrow 9$
Absorption correction: none	$k = -12 \rightarrow 12$
4239 measured reflections	$l = -11 \rightarrow 10$
756 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0625P)^2 + 0.1854P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
756 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
31 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Refinement. Hydrogen atoms were placed in calculated positions (C–H 0.99 Å for methylene C atoms and N–H 0.92 Å for N atoms) and were included in the refinement in the riding model approximation with U(H) set to 1.2 $U_{eq}(C)$ for C atoms and 1.2 $U_{eq}(N)$ for N atoms.

	x	У	Z		$U_{\rm iso}*/U_{\rm eq}$		
N1	0.2072 (3)	0.2500	0.395	5 (3)	0.0473 (6)		
H101	0.2341	0.2500	0.294	6	0.057*		
H102	0.0843	0.2500	0.406	5	0.057*		
C1	0.3204 (4)	0.1712 (3)	0.628	3 (3)	0.0781 (8)		
H11	0.2249	0.1348	0.695	4	0.094*		
H12	0.4376	0.1348	0.664	1	0.094*		
C2	0.2871 (3)	0.1242 (2)	0.470	2 (3)	0.0623 (6)		
H21	0.4009	0.0963	0.420	8	0.075*		
H22	0.2032	0.0427	0.467	7	0.075*		
Cl1	0.29515 (8)	0.2500	0.056	10 (7)	0.0488 (3)		
Atomic displa	acement parameters U^{11}	(\mathring{A}^2) U^{22}	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³	
N1	0.0466 (12)	0.0500 (13)	0.0452 (12)	0.000	-0.0007 (10)	0.000	
C1	0.102 (2)	0.0775 (16)	0.0553 (14)	0.0109 (14)	-0.0060 (13)	0.0106 (12)	
C2	0.0803 (16)	0.0411 (11)	0.0657 (14)	0.0045 (10)	0.0013 (11)	0.0050 (9)	
Cl1	0.0477 (4)	0.0528 (4)	0.0459 (4)	0.000	-0.0020 (3)	0.000	
Geometric pa	arameters (Å, °)						
N1—C2 ⁱ		1.482 (3)	32 (3) C1—C2		1.49	1.495 (4)	
N1—C2		1.482 (2)	C1—	H11	0.99	900	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

N1—H101	0.9200	C1—H12	0.9900
N1—H102	0.9200	C2—H21	0.9900
C1—C1 ⁱ	1.482 (5)	C2—H22	0.9900
C2 ⁱ —N1—C2	105.9 (2)	C1 ⁱ —C1—H12	110.3
C2 ⁱ —N1—H101	110.5	C2—C1—H12	110.3
C2-N1-H101	110.5	H11—C1—H12	108.5
C2 ⁱ —N1—H102	110.5	N1—C2—C1	104.64 (19)
C2—N1—H102	110.5	N1—C2—H21	110.8
H101—N1—H102	108.7	C1—C2—H21	110.8
C1 ⁱ —C1—C2	107.20 (13)	N1—C2—H22	110.8
C1 ⁱ —C1—H11	110.3	C1—C2—H22	110.8
C2-C1-H11	110.3	H21—C2—H22	108.9
C2 ⁱ —N1—C2—C1	31.4 (3)	C1 ⁱ —C1—C2—N1	-19.16 (18)
Symmetry codes: (i) x , $-y+1/2$, z .			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H101…Cl1	0.92	2.17	3.091 (3)	180
N1—H102···Cl1 ⁱⁱ	0.92	2.18	3.097 (2)	177
Symmetry codes: (ii) $x - 1/2$, y , $-z + 1/2$.				

sup-4

Fig. 2

